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Basic concepts in R (cont.)

Objects

Variables

a = 1
b = 2
c = 42

Reassignment

Just like we assign values to variables, we can reassign them and overwrite the old value.

a = a + b
a

## [1] 3

a = a + b
a

## [1] 5

a = a + b
a

## [1] 7

What is the value of b?

b

## [1] 2

Why didn’t b change?

We never reassigned b (b = ...), we only reassigned the value of a.
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Scripts

Always work in scripts!

Open a new R script:

• Ctrl+Shift+N (Windows)

• Command+Shift+N (Mac)

Source: RStudio Keyboard Shortcuts

Commenting

# "This line is commented out."
"This line is not commented out."

## [1] "This line is not commented out."

Comment/uncomment line:

• Ctrl+Shift+C (Windows)

• Command+Shift+C (Mac)

An example of well-commented code:

# Load iris data
data(iris)

# View structure of iris data
str(iris)

## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

# Subset iris data to Species versicolor
irisVe = subset(x=iris, subset=Species == "versicolor")

# Find correlation between sepal length and petal length in versicolor
cor(x=irisVe$Sepal.Length, y=irisVe$Petal.Length) # Result: 0.754049

## [1] 0.754049

You can read about the iris data set by entering ?iris in the console. Notice where R. A. Fisher’s paper was
published. We’ll address this, and the dark side of the origins of statistics, in Week 4.

Packages

Packages are collections of functions and data sets useful for conducting different types of analyses.

You can get a list of packages that come installed with R using the command (more detail available by
removing the rownames() wrapper):

rownames(installed.packages(priority="high"))
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## [1] "nlme" "base" "boot" "class" "cluster"
## [6] "codetools" "compiler" "datasets" "foreign" "graphics"
## [11] "grDevices" "grid" "KernSmooth" "lattice" "MASS"
## [16] "Matrix" "methods" "mgcv" "nlme" "nnet"
## [21] "parallel" "rpart" "spatial" "splines" "stats"
## [26] "stats4" "survival" "tcltk" "tools" "utils"

Additional packages can be installed using the install.packages() function, for example:

install.packages("tidyverse")
install.packages(c("reshape2","Hmisc"))

Notice that if you’re installing multiple packages at once, the list of packages must be given as a vector
(i.e. wrapped inside the c() function).

Load packages using the library() function:

library(ggplot2)

You can only load packages one at a time. Sometimes load order matters, because if two packages have
functions with the same name, the last one loaded is the one R will assume you are referring to. To specify
which one you want, you can put the package name before your function call, like so: dplyr::arrange().

install.packages() has to have the package name in quotes. For library(), quotes are optional.

Lists of packages useful for specific tasks, such as machine learning or Bayesian inference, are available on
the Task Views page of CRAN (“Comprehensive R Archive Network”), which is an official site run by the
developers of R.

Data types and classes

Nominal (or Categorical)

“A nominal scale variable (also referred to as a categorical variable) is one in which there is no particular
relationship between the different possibilities: for these kinds of variables it doesn’t make any sense to say
that one of them is”bigger" or “better” than any other one, and it absolutely doesn’t make any sense to
average them. . . In short, nominal scale variables are those for which the only thing you can say about the
different possibilities is that they are different. That’s it.“

Source: Navarro, Section 2.2

Corresponding class in R:

• Factor

We’ll come back to these later, when we get to data frames.

Ordinal (or Ranked)

“Ordinal scale variables have a bit more structure than nominal scale variables, but not by a lot. An ordinal
scale variable is one in which there is a natural, meaningful way to order the different possibilities, but you
can’t do anything else.”

Source: Navarro, Section 2.2

Corresponding class in R:

• Ordered factor

We’ll have a whole section later on how to deal with ordinal data. Likert-type scales are ordinal.
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Measurement

Continuous

“A continuous variable is one in which, for any two values that you can think of, it’s always logically possible
to have another value in between.”

Source: Navarro, Section 2.2

Corresponding class in R:

• Numeric

This is what we’ve been working with already (see the variables a, b, and c above). You can perform
mathematical operations on a numeric variable (sometimes called a “float,” for “floating point number,” the
“point” part referring to the decimal point), and most statistical procedures are based on the assumption of
working with a continuous (numeric) variable.

Discrete

“A discrete variable is, in effect, a variable that isn’t continuous. For a discrete variable, it’s sometimes the
case that there’s nothing in the middle.”

Source: Navarro, Section 2.2

Corresponding classes in R:

• Integer

m = 5L
n = 1L
m + n

## [1] 6

Don’t ask what the “L” stands for. Nobody knows. It’s just how you specify you want a number as an integer
rather than as a numeric variable. Most times it won’t matter, and you’ll be fine sticking with numeric
variables.

• Logical (sometimes)

r = 300 > 1
r

## [1] TRUE

s = 5 == 4
s

## [1] FALSE

r + s

## [1] 1

This behavior is useful for summing how many of something are present or fit a certain condition, using the
sum() function.

Other types

See the following for a list of all basic classes included in R:

?methods::`character-class`
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Character (or String)

x = "apple"
y = "orange"
z = "2.5"
x

## [1] "apple"

y

## [1] "orange"

z

## [1] "2.5"

Very common, used to represent plain text. If you want them to be meaningful as data (e.g. Condition A
vs. Condition B), you should coerce the variable to a factor (see below).

What happens if we try to put them together?

x + y

## Error in x + y: non-numeric argument to binary operator

z + b

## Error in z + b: non-numeric argument to binary operator

These don’t work, because they’re apples and oranges.

Really, it’s because you can’t perform mathematical operations on characters (but see coercion, below). You
can concatenate them using the paste() function if you want to combine them with something else, like this:

xy = paste(x, y)

zb = paste(z, b)

You can then split them apart again later, if needed. One way to do this is strsplit():

strsplit(x=xy, split=" ", fixed=TRUE)

## [[1]]
## [1] "apple" "orange"

Date and Time

In R these are:

• Date

• POSIXct

• POSIXlt

For example, see:

Sys.Date()

## [1] "2019-04-02"

str(Sys.Date())

## Date[1:1], format: "2019-04-02"
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Sys.time()

## [1] "2019-04-02 11:22:29 MDT"

str(Sys.time())

## POSIXct[1:1], format: "2019-04-02 11:22:29"

These are a nightmare to deal with in R. Avoid doing analyses on dates and times whenever possible. If
you must, look into the lubridate package to make things a bit easier.

Coercion

Remember z + b above? What if, instead of concatenating the strings, you wanted to treat z as a number
and add it to b?

z

## [1] "2.5"

b

## [1] 2

z + b

## Error in z + b: non-numeric argument to binary operator

This doesn’t work because R is still treating z as a character that reads “2.5” rather than the number 2.5.
But we can change a variable’s class by “coercing” it to a different class. When R does this, it makes its best
guess at how the values should be represented in the other class. With some coercions, such as this one, it is
relatively straightforward:

z = as.numeric(z)
z

## [1] 2.5

z + b

## [1] 4.5

(Coercion functions are usually as. and the name of the class.)

Some coercions may not be so intuitive, and R will throw a warning when it can’t figure out what to do:

steve = "Steve"
as.numeric(steve)

## Warning: NAs introduced by coercion

## [1] NA

What do you mean you want to change “Steve” to a number? I don’t know. R doesn’t know either. Maybe
you want to sum the numbers of each letter of the alphabet that spells “Steve”? Maybe you want to know
what number “Steve” appears in a vector or data frame? Whatever it is, you’ll need to be more precise in
telling R what it is you want.

Bonus activity: What would the answer to the first question be? What is the sum of “Steve”?
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NA and other constants

Above, you’ll notice that R returned the value NA when we tried to coerce “Steve” to numeric. NA (without
quotes or anything) is a special constant defined in R that indicates a missing value. This will be important
later when we deal with real data, and it’s important to define any missing values as NA so that R treats
them appropriately.

There are a few other constants defined in R, which you can see listed by running this line:

?base::`Constants`

Try letters (compare with LETTERS), pi, or month.name. They come in handy occasionally (like for our
“bonus activity” above).

Data structures

Vectors

A vector is the most basic data structure in R, and most other structures are made up of vectors. A vector is
made up of one or more elements, up to (2ˆ31)-1 (or about 2 billion).

(Note for R markdown users, you can have R evaluate a statement within a line of text like this: (2ˆ31)-1 =
2147483647.)

You make a vector using the c() function, like so:

numVec = c(1,2,3,8,9,10)
numVec

## [1] 1 2 3 8 9 10

charVec = c("the","quick","brown","fox")
charVec

## [1] "the" "quick" "brown" "fox"

In case you don’t believe me, let’s make sure that they are both vectors:

is.vector(numVec)

## [1] TRUE

is.vector(charVec)

## [1] TRUE

You can reference individual elements of a vector by using brackets ([]) and the number of the element (the
first element is [1]):

numVec[6]

## [1] 10

charVec[2]

## [1] "quick"

Note that, if I want the number 8, it’s the fourth element in my numVec vector, so I have to use [4], not [8]:

numVec[4]

## [1] 8

numVec[8]
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## [1] NA

You can reassign individual elements of a vector this way:

numVec[1] = 10000
numVec

## [1] 10000 2 3 8 9 10

Or use the referenced value in some math:

numVec[4] / 2

## [1] 4

You can combine vectors:

numVecB = c(75,100,500)
numVecC = c(numVec, numVecB)
numVecC

## [1] 10000 2 3 8 9 10 75 100 500

charVecB = c("jumps","over","the","lazy","dog")
charVecC = c(charVec, charVecB)
charVecC

## [1] "the" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"

But a vector can only contain elements of one class. Let’s check the classes of our first two vectors and try to
combine them:

class(numVec)

## [1] "numeric"

class(charVec)

## [1] "character"

mixVec = c(numVec, charVec)
mixVec

## [1] "10000" "2" "3" "8" "9" "10" "the" "quick"
## [9] "brown" "fox"

Notice how it converted our numeric vector to character (we established that the other way around makes no
sense), so that it could combine them like we asked it to.

You can make an empty vector of a specific class by using the function for that class:

emptyNumVec = numeric()
emptyNumVec

## numeric(0)

And then add stuff to it later:

emptyNumVec[1] = 2
emptyNumVec[2] = 4
emptyNumVec

## [1] 2 4

You can also perform mathematical operations on numeric vectors, the same way that you can with numeric
variables. When you do so, it matches the first element of one vector with the first element of the other, and
the second element of one vector with the second element of the other, et cetera:
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numVec

## [1] 10000 2 3 8 9 10

numVecB

## [1] 75 100 500

numVec + numVecB

## [1] 10075 102 503 83 109 510

What happened here?

There were twice as many elements in numVec as in numVecB, so R looped through numVecB again when it
was looking for more elements to add. So, R did 10000 + 75, 2 + 100, 3 + 500, 8 + 75, 9 + 100, 10
+ 500.

This is a cool feature (and it will throw a warning if one vector is not a multiple of the other), but be careful,
because you may do it without meaning to, and end up with a mess. It’s usually better to make sure both of
your vectors are the same length beforehand.

You can check the length of a vector with. . . wait for it. . . length():

length(numVec)

## [1] 6

length(numVecB)

## [1] 3

Matrices

A matrix is a way to store data in a tabular (table) form, made up of rows and columns. There are whole
fields of math dealing with matrices and matrix operations (matrix algebra and linear algebra), but we’re
not going to get into their mathematical properties. For you, and for the purposes of analyzing data in R, a
matrix is made up of rows and columns, both of which are represented as vectors.

Let’s make one:

firstM = matrix(data=c(4,81,5,84,
70,72,74,69,
29,34,27,3),

nrow=3, ncol=4)
firstM

## [,1] [,2] [,3] [,4]
## [1,] 4 84 74 34
## [2,] 81 70 69 27
## [3,] 5 72 29 3

Wait, that didn’t turn out the way we wanted. Look at how we listed our data how the matrix turned out.
Let’s look at the help documentation for matrix():

help(matrix)

Or, as a helpful shortcut, you can also use:

?matrix

It looks like the matrix() function fills the data in by columns by default. But it has an argument (byrow)
that we can use to make it fill by row, the way we listed the data. Let’s try that.
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firstM = matrix(data=c(4,81,5,84,
70,72,74,69,
29,34,27,3),

nrow=3, ncol=4, byrow=TRUE)
firstM

## [,1] [,2] [,3] [,4]
## [1,] 4 81 5 84
## [2,] 70 72 74 69
## [3,] 29 34 27 3

Perfect. We can make sure the dimensions are correct with these functions:

dim(firstM)

## [1] 3 4

nrow(firstM)

## [1] 3

ncol(firstM)

## [1] 4

Now, we can reference values in a matrix the same way we referenced elements in a vector, but now we have
two dimensions. So, we use two numbers inside the brackets. The first always refers to the row, and the
second always refers to the column. So, if we want the value in row 2, column 4 (69), we use:

firstM[2,4]

## [1] 69

And we can replace it by reassignment, the same as an element in a vector. This time we’ll ask it to subtract
1 from its current value:

firstM[2,4] = firstM[2,4] - 1
firstM[2,4]

## [1] 68

If we want to reference a whole row or column (vector), we only use the number for that row or column, but
make sure to leave the comma so R knows which one you want. So, if we want to get the first row, and then
the third column, we would use:

firstM[1,]

## [1] 4 81 5 84

firstM[,3]

## [1] 5 74 27

If we want multiple rows or columns, we can use vectors to tell R which ones we want.

firstM[1:3,c(1,4)]

## [,1] [,2]
## [1,] 4 84
## [2,] 70 68
## [3,] 29 3

(The 1:3 syntax above is an easy way to create a vector that is a sequence of integers. This one is equvalent
to c(1,2,3) or seq(from=1, to=3, by=1).)
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Data Frames

Data frames are unique to R. They are just like matrices (and most anything you can do to a matrix you can
also do to a data frame), but each column has a label and a class assigned to it. This is because, in a data
frame, each column is treated as a variable and each row is treated as an observation. You can reference
these variable names instead of column numbers, and you can use them in formulas.

For this reason, it’s usually much easier to work with data frames than with matrices when doing statistical
analyses.

Let’s make our matrix firstM into a data frame.

firstDF = data.frame(firstM)
firstDF

## X1 X2 X3 X4
## 1 4 81 5 84
## 2 70 72 74 68
## 3 29 34 27 3

Our columns (variables) didn’t have names, so R assigned them some. Let’s fix that. We can reference the
names of the rows or columns of a matrix or data frame with rownames() or colnames(), respectively.

colnames(firstDF)

## [1] "X1" "X2" "X3" "X4"

length(colnames(firstDF))

## [1] 4

It’s a character vector of length 4, so we need to replace it with something of the same type and length:

colnames(firstDF) = c("soil","climate","altitude","rating")
firstDF

## soil climate altitude rating
## 1 4 81 5 84
## 2 70 72 74 68
## 3 29 34 27 3

Much better. Now we can reference those columns by name:

firstDF$soil

## [1] 4 70 29

firstDF$rating / firstDF$altitude

## [1] 16.8000000 0.9189189 0.1111111

Remember that these are vectors we’re pulling out, so if we want a specific value from a column, we only
have one dimension in that column vector to reference.

firstDF$altitude[3]

## [1] 27

But we can still use row and column numbers to reference specific values in the data frame, as well:

firstDF[1,4] - firstDF[1,1]

## [1] 80

We’ll do much, much more work with data frames once we start working with data and running analyses.
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Lists

A list is like a vector that can hold other types of objects, or even more lists, inside it. Check it out:

myList = list(numVec,
charVec,
list(c(1,2,3), c(3,2,1)),
"Franz Liszt")

myList

## [[1]]
## [1] 10000 2 3 8 9 10
##
## [[2]]
## [1] "the" "quick" "brown" "fox"
##
## [[3]]
## [[3]][[1]]
## [1] 1 2 3
##
## [[3]][[2]]
## [1] 3 2 1
##
##
## [[4]]
## [1] "Franz Liszt"

Just like a vector, we can use brackets to reference an element of a list:

myList[2]

## [[1]]
## [1] "the" "quick" "brown" "fox"

But this returns another list, containing only the second element. If we want the object itself (a vector), we
have to use double brackets.

myList[[2]]

## [1] "the" "quick" "brown" "fox"

We can also reference elements within the referenced object by adding another set of brackets.

myList[[3]]

## [[1]]
## [1] 1 2 3
##
## [[2]]
## [1] 3 2 1

myList[[3]][[2]]

## [1] 3 2 1

Since lists can contain more lists, you could theoretically keep referencing things down many levels. But it
wouldn’t be good practice to store data like this, because it becomes very cumbersome to access.

Similar to lists are arrays, which are multi-dimensional matrices (matrices within matrices). These can
sometimes be useful, and you can learn more about them by bringing up their help page: ?array.

12



Functions

Functions are the bread and butter, or meat and potatoes, or whatever, of R. Almost every line of code you
write will be used to run a function. Functions take one or more input arguments, and spit out some output
which, depending on the function, could be a number, or a vector, or a data frame, or some other class of
object.

For instance, let’s use the base function mean() to calculate the mean of the first three variables we defined.

a

## [1] 7

b

## [1] 2

c

## [1] 42

mean(x=c(a, b, c))

## [1] 17

Common functions

Remember that the help() function (or ?) pulls up the documentation for a function, as long as that function
is in one of your installed and loaded packages. To get some practice using it, look up the help pages to learn
about these functions that you will use all the time:

• rep()

• seq()

• sum()

• max() / min()

• mean()

• sd()

• summary()

• str()

• class()

• paste() / paste0()

• nchar()

• length()

• dim()

• nrow() / ncol()
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• dimnames()

• rownames() / colnames()

• head() / tail()

• unique()

• is.na()

• complete.cases()

• rm()

• View() (note the capital “V”)

Defining a function

The basic structure of writing a function is NAME = function(ARGUMENT, ARGUMENT, ...){STATEMENTS}.
To tell the function what to output, you use return(OUTPUT) before closing the curly bracket.

The general advice is, for anything you plan on doing more than once, put it in a function so that it’s cleaner
and more easily repeatable. That said, I have found in my own research that I very rarely use the exact same
code twice even when performing the same kinds of analyses, because different types and formats of data
always require different ways of dealing with them.

It is useful, however, to make a couple functions on your own to see functions in R work. If you ever want to
see the guts of a function from an R library, all you have to do is forget to add the parentheses afterwards,
like this one for calculating standard deviation:

sd

## function (x, na.rm = FALSE)
## sqrt(var(if (is.vector(x) || is.factor(x)) x else as.double(x),
## na.rm = na.rm))
## <bytecode: 0x0000000018e4fcf8>
## <environment: namespace:stats>

On the second line, you can see–amongst the mess of checking classes–it takes the square root of the variance
of a vector of numbers, just as it should.

(Some won’t be helpful in that they just reference other functions or scripts.)

For practice, let’s make our own function, one that adds the variable a to the variable b.

a_plus_b = function(a, b){
aPlusB = a + b
return(aPlusB)

}

a_plus_b(a=1, b=5)

## [1] 6

Why don’t we just use aPlusB instead of the whole function?

aPlusB(a=1, b=5)

## Error in aPlusB(a = 1, b = 5): could not find function "aPlusB"
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Why doesn’t this work?

aPlusB is a variable, not a function. You can’t pass other variables to it. Functions are defined to have input
arguments (and always have () afterwards, even if there is no input) and output a result. Variables just hold
a value or values for you, so sending it an input doesn’t do anything.

Let’s see what value is stored for the aPlusB variable.

aPlusB

## Error in eval(expr, envir, enclos): object 'aPlusB' not found

Why doesn’t this work?

aPlusB is called a “local” variable, because it only exists inside the a_plus_b function and is removed as
soon as the function is finished running. It doesn’t have a value assigned to it in the “global” environment
that we’re working in. (Look in the “Environment” tab in RStudio.)

Operations

Also known as control-flow statements, you can see a list of the operations below by using ?Control.

Conditionals

If

if statements are common in programming. In R, we use them to evaluate whether a statement is true and,
if so, to execute one or more commands. Their structure is if (CONDITION) {RESULT}. The conditional
statement should evaluate as a logical variable; that is, running it on its own should give a TRUE or FALSE.
The whole condition always needs to be inside the parentheses. The result should be entirely within a set of
curly brackets following the condition.

It usually helps visually to break it into multiple lines and have the result commands indented under the
if() statement (RStudio does this formatting automatically), like so:

myValue = 100
critValue = 50
if (myValue > critValue) {

print("Yes!")
}

## [1] "Yes!"

You can also add an else{} after the if() result to add an outcome to be executed when the if() statement
resolves as FALSE:

myValue = 10
if (myValue > critValue) {

print("Yes!")
} else {

print("No!")
}

## [1] "No!"

Sometimes it is also helpful to be able to nest if() statements inside one another (but more than a couple
levels of this can get confusing fast):
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myValue = 50
if (myValue > critValue) {

print("Yes!")
} else {

if (myValue == critValue) {
print("Maybe...")

} else {
print("No!")

}
}

## [1] "Maybe..."

Which

which() is a function that can be used to find which values of an object meet a certain condition. For
instance, let’s look at the rating variable of firstDF:

firstDF

## soil climate altitude rating
## 1 4 81 5 84
## 2 70 72 74 68
## 3 29 34 27 3

which(firstDF$rating > 35)

## [1] 1 2

which() doesn’t return the values themselves, it returns the a vector of the indices whose values match the
condition. If you want to get the actual values, you need to take the vector of indices that which() produces
and plug it in to the brackets to reference those elements of the rating vector:

firstDF$rating[which(firstDF$rating > 35)]

## [1] 84 68

This can also be used for subsetting data frames, which we will get into next week.

Iteration

Loops

Loops are another kind of statement common across programming languages. The general idea is to go
through each thing in a list of things and execute a command for each one. The most useful one in R is
a for() statement. The structure is similar to an if() statement, in that you have for (VARIABLE in
SEQUENCE) {RESULT}. The difference is that, instead of a conditional statement inside the parentheses, you
have an internal variable (which can be anything you want, but i, j, k. . . is conventional) that represents
how far you are through your loop, and the sequence of things to loop through (represented as the starting
value, a colon, and the ending value).

A simple exmaple is:

for (i in 1:5) {
print(i)

}

## [1] 1
## [1] 2
## [1] 3
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## [1] 4
## [1] 5

This loop goes through the sequence of numbers 1 through 5, and for each one prints the value of i. In each
loop, R changes the value of i to match the current number in the sequence, so referencing it in a command
is a good way to see where you are (by printing it) or to reference a different value in an object every loop.

For example, let’s imagine that firstDF$altitude is measured in meters and we want to convert it to feet.
We could do this more easily by just multiplying the whole vector by 3.28084, but here we’ll do it with a loop.

(There are often many different ways to accomplish the same result in R, and you can always do what works
best for you even if it isn’t the most straightforward solution.)

We also make a new, empty numeric variable to hold the converted values, called altitudeFt.

firstDF

## soil climate altitude rating
## 1 4 81 5 84
## 2 70 72 74 68
## 3 29 34 27 3

length(firstDF$altitude)

## [1] 3

altitudeFt = numeric()
for (i in 1:length(firstDF$altitude)) {

altitudeFt[i] = firstDF$altitude[i] * 3.28084
}

altitudeFt

## [1] 16.40420 242.78216 88.58268

Remember that we can use the counting variable i in the for() loop to reference objects. Here, we set the
loop to run for as many times as the length of the firstDF$altitude vector, and then used i to reference
both the old vector and our new vector at the same time, so that their values end up corresponding with one
another.

Once we have the altitudeFt variable, we can add it to our data frame by referencing it as a new column
variable:

firstDF$altitudeFt = altitudeFt
firstDF

## soil climate altitude rating altitudeFt
## 1 4 81 5 84 16.40420
## 2 70 72 74 68 242.78216
## 3 29 34 27 3 88.58268

Like if() statements, we can also nest for() loops. Here is an example, where i represents the row of
firstM and j represents the column, to make the loop run through every value in the two-dimensional matrix.
This loop also uses a variable called tick and increases it by one at some point in the loop.

tick = 1
for (i in 1:nrow(firstM)) {

for (j in 1:ncol(firstM)) {
firstM[i,j] = firstM[i,j] - tick

}
tick = tick + 1

}
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firstM

## [,1] [,2] [,3] [,4]
## [1,] 3 80 4 83
## [2,] 68 70 72 66
## [3,] 26 31 24 0

So when does tick increase and what does this do to our matrix?

The loop starts at row (i) 1, then loops through every column (j) of row 1, subtracting the value of tick
from each element. Then, before advancing to row 2, it increases the value of tick by 1. Then, it moves to
row 2 and loops through every column, subtracting tick (which now has a value of 2) from each element,
increases tick by 1, and so on for the third row.

These kinds of structures are good for doing something to every value of a specific set of rows or columns in a
matrix or data frame. Since they have two dimensions, you need two loops and two indicator values (i and
j).

Two other loop structures are available in R, while() and repeat(). You can check them out. In my
experience, they are much more useful in traditional programming and less so in R when you are manipulating
and analyzing data. In addition, anything you could do using while() or repeat() can also be done with a
for() loop, so at this point it’s best to just concentrate on the more flexible for() loops.

Apply

apply() is actually not one function, but a family of functions each for a different data structure that includes
apply(), lapply(), sapply(), vapply(), mapply(), rapply(), and tapply(). You can check the help file
for each for more information. Essentially, they are a faster and more efficient way of looping through the
rows or columns (referred to as “margins” in the help) of an object and applying a function to them.

Here is an example, in which we use the apply() function (which works on arrays, and matrices count as
two-dimensional arrays, just like variables count as one-dimensional vectors) to loop through the columns of
firstM and calculate the sum() of each column:

apply(firstM, 2, sum)

## [1] 97 181 100 149

Works great, and it’s fast. But, to be honest, I never learned how to use the apply() functions well because
for() loops have always made better sense to me for complex tasks and I haven’t been in many situations
where speed mattered enough to change for() loops to solutions that used the apply() family of functions.
So, for the purposes of this course, be aware of them, and if you want or need to use an apply() function for
a specific task, StackOverflow is a good place to find answers and example code.
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