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Dimensionality reduction

Dimensionality reduction, like its name suggests, is used to reduce the number of dimensions in our data set.
In other words, we want to reduce the number of variables to be used to model the data without losing too
much of the variance those variables explain.

This is a common problem. It’s difficult to imagine points laid out in 12-dimensional space. It’s easier to see
points in a 2-dimensional (X x Y) or 3-dimensional (X x Y x Z) space. It’s also useful to see how our data
can be simplified and clustered.

Let’s load our Bob Marshall onsite survey data back in:

bm = read.csv("./data/BMWC2004_onsitedata.csv", header=T, na.strings="88",
stringsAsFactors=F)

bm$recent_f[bm$recent_f == 0] = NA

bmLik = bm
bmLik[,36:45] = lapply(bmLik[,36:45], function(x) ordered(x))

And recreate our correlation matrix:

library(lavaan)

## This is lavaan 0.6-3

## lavaan is BETA software! Please report any bugs.

bmLikCor = lavCor(bmLik[,36:45])

Let’s also load our previously saved “best” Christmas Bird Count data:

best = read.csv("./data/fcbirdbest.csv", header=T, row.names=1)

And finally, we’ll also bring back our old Indo-European folktale data from Lecture 03:

library(readxl)

folktales = as.data.frame(read_xlsx(path="./data/rsos150645supp1.xlsx",
sheet=1, range="A2:JP52"))

colnames(folktales)[1] = "society"
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Multidimensional scaling

In my experience, primarily used as a way to visualize a distance matrix. However, there are other applications
in ecology.

We’ll use our Bob Marshall Wilderness survey data, but right now we have a correlation matrix. We need to
convert this from a measure of similarity or association (correlation) to a measure of dissimilarity (distance).

We could do it manually, but luckily there’s a function in the psych package, which we were planning on
loading later anyway, to do it for us.

install.packages("psych")

library(psych)

##
## Attaching package: 'psych'

## The following object is masked from 'package:lavaan':
##
## cor2cov

?cor2dist

bmLikDist = as.dist(cor2dist(bmLikCor))
bmLikDist

## natural remotnes scenic_b hunting fishing recent_f
## remotnes 0.5704977
## scenic_b 1.0515567 0.9863890
## hunting 1.4615125 1.4393572 1.5125929
## fishing 1.3603630 1.3329079 1.4377701 0.8566035
## recent_f 1.3198146 1.3881493 1.1623764 1.2596373 1.4117703
## test_ski 1.2981759 1.4014717 1.2798294 1.2405682 1.4147664 1.1854113
## familiar 1.3609819 1.3644849 1.2606143 1.2996073 1.3103081 1.2660455
## variety 1.3184390 1.2984087 1.2842120 1.4259006 1.4726524 1.4263578
## friend_s 1.3824247 1.3641166 1.2151582 1.4267610 1.4266808 1.3921892
## test_ski familiar variety
## remotnes
## scenic_b
## hunting
## fishing
## recent_f
## test_ski
## familiar 1.2210226
## variety 1.2355076 1.5686837
## friend_s 1.3660988 1.5218809 1.1418339

Classical

Represents the distance between points on a two-dimensional plane.

?cmdscale

bmCMD = cmdscale(bmLikDist)
bmCMD

## [,1] [,2]
## natural -0.5152544 -0.41355292
## remotnes -0.5360831 -0.41294618
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## scenic_b -0.4665433 -0.14344422
## hunting 0.7581483 0.04870982
## fishing 0.5974677 -0.13641546
## recent_f 0.1613884 -0.04454814
## test_ski 0.1734981 0.19224084
## familiar 0.3327288 -0.43118845
## variety -0.2869680 0.67972386
## friend_s -0.2183826 0.66142085

We can use these coordinates to plot the points, and add text labels.

plot(bmCMD[,1], bmCMD[,2])
text(bmCMD[,1], bmCMD[,2] + 0.04,

labels=rownames(bmCMD), col="blue", cex=0.7)
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Nonmetric

Tries to reproduce ranks of distances (furthest, second furthest, etc.) rather than the distance values
themselves.

library(MASS)

?isoMDS

bmNMD = isoMDS(bmLikDist)

## initial value 19.805863
## iter 5 value 14.937231
## iter 10 value 14.361126
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## iter 15 value 13.937601
## final value 13.767700
## converged

bmNMD

## $points
## [,1] [,2]
## natural -0.2914076 -0.22953015
## remotnes -0.2963235 -0.23046987
## scenic_b -0.3703879 -0.23513955
## hunting 0.6799271 0.14245565
## fishing 0.5972598 0.01257943
## recent_f 0.1750672 -0.08985301
## test_ski 0.1160045 0.27390459
## familiar 0.3008428 -0.52798807
## variety -0.4908231 0.46848012
## friend_s -0.4201593 0.41556086
##
## $stress
## [1] 13.7677

plot(bmNMD$points[,1], bmNMD$points[,2])
text(bmNMD$points[,1], bmNMD$points[,2] + 0.04,

labels=rownames(bmNMD$points), col="blue", cex=0.7)
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A more thorough version is available in the vegan package, metaMDS(), which has some additional features
and compares the results of a bunch of attempts.
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library(vegan)

## Loading required package: permute

## Loading required package: lattice

## This is vegan 2.5-4

?metaMDS

head(best)

## American.Crow American.Dipper American.Goldfinch American.Kestrel
## 1952 353 12 16 2
## 1956 5 2 36 2
## 1957 3 3 7 3
## 1958 168 8 3 7
## 1960 2 5 3 6
## 1962 590 20 6 2

bestNMD = metaMDS(best)

## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.08931323
## Run 1 stress 0.08928887
## ... New best solution
## ... Procrustes: rmse 0.00149229 max resid 0.008341898
## ... Similar to previous best
## Run 2 stress 0.08931322
## ... Procrustes: rmse 0.001492494 max resid 0.008342688
## ... Similar to previous best
## Run 3 stress 0.08931322
## ... Procrustes: rmse 0.001493096 max resid 0.008340178
## ... Similar to previous best
## Run 4 stress 0.08928881
## ... New best solution
## ... Procrustes: rmse 4.257218e-05 max resid 0.0002767761
## ... Similar to previous best
## Run 5 stress 0.08928881
## ... New best solution
## ... Procrustes: rmse 1.120373e-05 max resid 5.91197e-05
## ... Similar to previous best
## Run 6 stress 0.08928885
## ... Procrustes: rmse 4.948455e-05 max resid 0.0003244424
## ... Similar to previous best
## Run 7 stress 0.08928881
## ... Procrustes: rmse 1.001693e-05 max resid 4.533463e-05
## ... Similar to previous best
## Run 8 stress 0.08928897
## ... Procrustes: rmse 4.204434e-05 max resid 0.0002160946
## ... Similar to previous best
## Run 9 stress 0.0892889
## ... Procrustes: rmse 7.27295e-05 max resid 0.0004611319
## ... Similar to previous best
## Run 10 stress 0.08931346
## ... Procrustes: rmse 0.001492883 max resid 0.008345753
## ... Similar to previous best
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## Run 11 stress 0.08928894
## ... Procrustes: rmse 7.069263e-05 max resid 0.0004677734
## ... Similar to previous best
## Run 12 stress 0.08931324
## ... Procrustes: rmse 0.001494013 max resid 0.008337539
## ... Similar to previous best
## Run 13 stress 0.08928914
## ... Procrustes: rmse 5.542422e-05 max resid 0.0003174922
## ... Similar to previous best
## Run 14 stress 0.08931329
## ... Procrustes: rmse 0.001493135 max resid 0.008341131
## ... Similar to previous best
## Run 15 stress 0.08931352
## ... Procrustes: rmse 0.001492909 max resid 0.00834502
## ... Similar to previous best
## Run 16 stress 0.08928881
## ... New best solution
## ... Procrustes: rmse 6.678858e-06 max resid 3.409604e-05
## ... Similar to previous best
## Run 17 stress 0.08928881
## ... New best solution
## ... Procrustes: rmse 4.492373e-06 max resid 1.870763e-05
## ... Similar to previous best
## Run 18 stress 0.08928881
## ... Procrustes: rmse 5.380013e-06 max resid 2.896043e-05
## ... Similar to previous best
## Run 19 stress 0.08928881
## ... Procrustes: rmse 1.119591e-05 max resid 6.891358e-05
## ... Similar to previous best
## Run 20 stress 0.08931322
## ... Procrustes: rmse 0.001495544 max resid 0.008335872
## ... Similar to previous best
## *** Solution reached

bestNMD

##
## Call:
## metaMDS(comm = best)
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(sqrt(best))
## Distance: bray
##
## Dimensions: 2
## Stress: 0.08928881
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'wisconsin(sqrt(best))'

Here we can plot the sites and the species on the same axes.

plot(bestNMD)
text(bestNMD$points[,1], bestNMD$points[,2] + 0.025,
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labels=rownames(bestNMD$points), col="blue", cex=0.7)
text(bestNMD$species[,1], bestNMD$species[,2] + 0.025,

labels=rownames(bestNMD$species), col="red", cex=0.7)
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Principal components analysis

Principal components analysis (PCA) is very commonly used in the literature, and breaks the data down into
a number of components that explain the most variance (in the first component) to the least variance (in the
last component).

One of the main challenges in dimensionality reduction is determining the number of components or factors
that is most appropriate for the data. Here we’re going to assume we only want two components, but in the
following sections we’ll go over some methods that also apply to PCA.

There are a number of functions in different packages that can perform PCA. One is in base R.

?princomp

The one we’ll use here is principal(), from the psych package, mainly because it allows us to input our own
correlation matrix instead of calculating correlations itself from raw data (like princomp()). We definitely
wouldn’t want to do that with the data we intend to use here, which are the dichotomous presence/absence
folktale data.

?psych::principal

folk = as.data.frame(t(folktales[,-1]))
colnames(folk) = folktales$society
folk[1:5,1:10]
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## Italian Ladin Sardinian Walloon French Spanish Portuguese Catalan
## 300 1 1 1 1 1 1 1 1
## 300A 0 0 0 0 0 0 0 0
## 301 1 1 1 1 1 1 1 1
## 301D 0 0 0 0 0 0 0 0
## 302 1 1 1 0 1 1 1 1
## Romanian Welsh
## 300 1 0
## 300A 1 0
## 301 1 0
## 301D 0 0
## 302 1 0

str(folk)

## 'data.frame': 275 obs. of 50 variables:
## $ Italian : num 1 0 1 0 1 0 0 1 0 0 ...
## $ Ladin : num 1 0 1 0 1 0 0 1 0 1 ...
## $ Sardinian : num 1 0 1 0 1 0 0 1 0 0 ...
## $ Walloon : num 1 0 1 0 0 0 0 1 0 0 ...
## $ French : num 1 0 1 0 1 0 0 1 1 1 ...
## $ Spanish : num 1 0 1 0 1 0 0 1 0 1 ...
## $ Portuguese : num 1 0 1 0 1 0 0 1 0 1 ...
## $ Catalan : num 1 0 1 0 1 0 0 1 0 0 ...
## $ Romanian : num 1 1 1 0 1 0 1 1 1 1 ...
## $ Welsh : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Irish : num 1 0 1 0 1 0 0 1 0 1 ...
## $ Scottish : num 1 0 1 0 1 0 0 1 0 0 ...
## $ Luxembourgish: num 0 0 0 0 0 0 0 0 0 0 ...
## $ German : num 1 1 1 0 1 0 1 1 1 1 ...
## $ Austrian : num 1 0 1 0 1 0 0 1 0 1 ...
## $ Flemish : num 1 0 1 0 1 0 0 1 0 1 ...
## $ Dutch : num 1 0 1 0 0 0 0 1 0 0 ...
## $ Frisian : num 1 0 1 0 1 0 0 1 0 1 ...
## $ English : num 1 0 1 0 0 0 0 0 0 0 ...
## $ Swedish : num 1 0 1 0 1 1 0 1 0 1 ...
## $ Norwegian : num 1 0 1 0 1 0 0 1 1 1 ...
## $ Danish : num 1 0 1 0 1 0 0 1 1 1 ...
## $ Faroese : num 1 0 1 0 0 0 0 1 0 0 ...
## $ Icelandic : num 0 0 1 0 1 0 0 0 0 0 ...
## $ Czech : num 1 1 1 0 1 0 1 1 0 1 ...
## $ Slovak : num 1 1 1 0 1 0 1 1 1 1 ...
## $ Lusatian : num 1 0 1 0 1 0 0 0 0 0 ...
## $ Polish : num 1 1 1 0 1 0 1 1 0 1 ...
## $ Byelorussian : num 1 1 1 1 1 0 1 1 1 0 ...
## $ Ukrainian : num 1 1 1 1 1 0 0 1 0 1 ...
## $ Russian : num 1 1 1 1 1 0 1 1 0 1 ...
## $ Bulgarian : num 1 0 1 1 1 1 0 1 0 1 ...
## $ Macedonian : num 0 0 0 0 0 1 0 0 0 0 ...
## $ Serbian : num 1 0 1 0 1 0 0 0 1 1 ...
## $ Croation : num 0 0 1 0 1 0 0 0 1 0 ...
## $ Slovenenian : num 1 0 1 0 1 0 0 1 1 0 ...
## $ Latvian : num 1 1 1 0 1 0 0 1 0 0 ...
## $ Lithuanian : num 1 1 1 1 1 1 1 1 0 1 ...
## $ Pakistani : num 1 0 0 0 1 0 0 0 0 0 ...
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## $ Indian : num 1 0 1 0 1 0 0 1 0 0 ...
## $ Nepali : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Gypsy : num 1 1 1 0 1 0 1 1 1 1 ...
## $ Tadzhik : num 0 0 0 0 0 0 0 1 1 0 ...
## $ Iranian : num 0 0 1 0 0 0 0 1 0 0 ...
## $ Kurdish : num 0 0 0 0 0 1 0 0 1 0 ...
## $ Afghan : num 1 0 1 0 0 0 0 0 0 0 ...
## $ Ossetian : num 1 1 1 0 1 0 1 1 1 1 ...
## $ Albanian : num 0 0 0 0 0 0 0 0 0 1 ...
## $ Greek : num 1 0 1 0 1 1 0 1 1 1 ...
## $ Armenian : num 0 0 1 1 1 1 0 1 0 1 ...

Tetrachoric correlation

Just as we used polychoric correlations for ordinal data, we need to use a specialized method for dichotomous
(binary) data. This is the tetrachoric correlation, a specific case of the polychoric correlation. The psych
package has a function to handle this:

?psych::tetrachoric

folkCor = tetrachoric(folk)$rho

## For i = 10 j = 5 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 10 j = 6 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 10 j = 7 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 10 j = 8 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 11 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 13 j = 1 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 14 j = 4 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 14 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 16 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 18 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 22 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 26 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 28 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 30 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 31 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 33 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 33 j = 13 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 37 j = 4 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 37 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 38 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 39 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 39 j = 13 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 41 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!
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## For i = 41 j = 12 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 41 j = 13 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 42 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 43 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 43 j = 13 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 45 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 45 j = 13 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 46 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 46 j = 13 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 47 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 48 j = 13 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 49 j = 10 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## For i = 50 j = 13 A cell entry of 0 was replaced with correct = 0.5. Check your data!

## Warning in cor.smooth(mat): Matrix was not positive definite, smoothing was
## done

folkCor[1:10,1:10]

## Italian Ladin Sardinian Walloon French Spanish
## Italian 1.0000000 0.6143107 0.7672081 0.5822875 0.7623941 0.7019760
## Ladin 0.6143107 1.0000000 0.5082589 0.4529498 0.6912242 0.5869226
## Sardinian 0.7672081 0.5082589 1.0000000 0.4697491 0.6411595 0.5570139
## Walloon 0.5822875 0.4529498 0.4697491 1.0000000 0.5475553 0.3977685
## French 0.7623941 0.6912242 0.6411595 0.5475553 1.0000000 0.7574446
## Spanish 0.7019760 0.5869226 0.5570139 0.3977685 0.7574446 1.0000000
## Portuguese 0.6514227 0.4780249 0.5945318 0.3558462 0.6855161 0.7875559
## Catalan 0.7661892 0.5715129 0.5199610 0.5004013 0.7938338 0.8457141
## Romanian 0.4675313 0.5093527 0.5261116 0.3636709 0.5062839 0.4811890
## Welsh 0.3112035 0.3171770 0.1855564 0.2100189 0.4494361 0.4542234
## Portuguese Catalan Romanian Welsh
## Italian 0.6514227 0.7661892 0.4675313 0.3112035
## Ladin 0.4780249 0.5715129 0.5093527 0.3171770
## Sardinian 0.5945318 0.5199610 0.5261116 0.1855564
## Walloon 0.3558462 0.5004013 0.3636709 0.2100189
## French 0.6855161 0.7938338 0.5062839 0.4494361
## Spanish 0.7875559 0.8457141 0.4811890 0.4542234
## Portuguese 1.0000000 0.6911430 0.4440923 0.4418054
## Catalan 0.6911430 1.0000000 0.4819166 0.4794101
## Romanian 0.4440923 0.4819166 1.0000000 0.3790717
## Welsh 0.4418054 0.4794101 0.3790717 1.0000000

Note the warnings about bivariate cell corrections, but it should be okay to leave it at the default correction
of 0.5.

For more information, see:

Savalei, V. (2011). What to do about zero frequency cells when estimating polychoric correlations. Structural
Equation Modeling, 18(2), 253-273. doi: 10.1080/10705511.2011.557339
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Smoothing ensures the matrix isn’t singular and is usually also okay, but be cautious. A singular matrix
could be a sign of multicollinearity in your data.

Now we can go ahead with the PCA:

folkPCA = principal(folkCor, 2, rotate="none")
folkPCA

## Principal Components Analysis
## Call: principal(r = folkCor, nfactors = 2, rotate = "none")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PC1 PC2 h2 u2 com
## Italian 0.80 -0.07 0.65 0.35 1.0
## Ladin 0.77 -0.15 0.62 0.38 1.1
## Sardinian 0.69 0.05 0.48 0.52 1.0
## Walloon 0.61 -0.09 0.38 0.62 1.0
## French 0.87 -0.16 0.79 0.21 1.1
## Spanish 0.76 -0.13 0.59 0.41 1.1
## Portuguese 0.67 0.08 0.45 0.55 1.0
## Catalan 0.79 -0.05 0.63 0.37 1.0
## Romanian 0.69 0.23 0.54 0.46 1.2
## Welsh 0.48 -0.38 0.37 0.63 1.9
## Irish 0.85 -0.13 0.74 0.26 1.0
## Scottish 0.50 -0.37 0.39 0.61 1.9
## Luxembourgish 0.38 -0.42 0.32 0.68 2.0
## German 0.77 -0.28 0.66 0.34 1.3
## Austrian 0.77 -0.13 0.61 0.39 1.1
## Flemish 0.76 -0.11 0.58 0.42 1.0
## Dutch 0.59 -0.41 0.52 0.48 1.8
## Frisian 0.71 -0.31 0.60 0.40 1.4
## English 0.52 -0.39 0.42 0.58 1.9
## Swedish 0.82 -0.19 0.71 0.29 1.1
## Norwegian 0.74 -0.20 0.58 0.42 1.2
## Danish 0.75 -0.23 0.62 0.38 1.2
## Faroese 0.71 -0.01 0.50 0.50 1.0
## Icelandic 0.69 -0.13 0.50 0.50 1.1
## Czech 0.82 -0.16 0.69 0.31 1.1
## Slovak 0.83 -0.03 0.69 0.31 1.0
## Lusatian 0.75 -0.20 0.60 0.40 1.1
## Polish 0.74 -0.08 0.56 0.44 1.0
## Byelorussian 0.70 0.07 0.49 0.51 1.0
## Ukrainian 0.74 0.04 0.56 0.44 1.0
## Russian 0.69 -0.02 0.48 0.52 1.0
## Bulgarian 0.71 0.36 0.63 0.37 1.5
## Macedonian 0.41 0.58 0.51 0.49 1.8
## Serbian 0.59 0.17 0.38 0.62 1.2
## Croation 0.56 0.16 0.34 0.66 1.2
## Slovenenian 0.81 -0.15 0.69 0.31 1.1
## Latvian 0.74 -0.15 0.56 0.44 1.1
## Lithuanian 0.71 -0.04 0.50 0.50 1.0
## Pakistani 0.43 0.60 0.55 0.45 1.8
## Indian 0.58 0.51 0.59 0.41 2.0
## Nepali 0.22 0.40 0.21 0.79 1.5
## Gypsy 0.72 0.06 0.52 0.48 1.0
## Tadzhik 0.31 0.57 0.42 0.58 1.5
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## Iranian 0.59 0.56 0.66 0.34 2.0
## Kurdish 0.37 0.58 0.47 0.53 1.7
## Afghan 0.39 0.50 0.40 0.60 1.9
## Ossetian 0.45 0.24 0.26 0.74 1.5
## Albanian 0.48 0.48 0.46 0.54 2.0
## Greek 0.75 0.21 0.61 0.39 1.2
## Armenian 0.60 0.52 0.63 0.37 2.0
##
## PC1 PC2
## SS loadings 22.13 4.55
## Proportion Var 0.44 0.09
## Cumulative Var 0.44 0.53
## Proportion Explained 0.83 0.17
## Cumulative Proportion 0.83 1.00
##
## Mean item complexity = 1.3
## Test of the hypothesis that 2 components are sufficient.
##
## The root mean square of the residuals (RMSR) is 0.08
##
## Fit based upon off diagonal values = 0.97

And plot it:

plot(folkPCA$loadings[,1], folkPCA$loadings[,2])
text(folkPCA$loadings[,1], folkPCA$loadings[,2] + 0.04,

labels=rownames(folkPCA$loadings), col="blue", cex=0.7)
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Cluster analysis

We often want to know what groups exist in our data, either to get a better sense of what our data looks like,
how it represents groups that we know exist in the data, or for classification if we want to predict which
group an observation would fall in given a set of values. For all this, there’s cluster analysis.

Hierarchical clustering

Hierarchical clustering builds a tree (or “dendrogram”) out of our data, successively linking the most closely
associated observations or variables. It’s one of the simplest and most widely used methods, and is a good
EDA method.

There are a variety of clustering methods within hierarchical clustering. Ward’s method usually gives good
results, but check others to see what’s most appropriate for your data.

?hclust

bmHC = hclust(bmLikDist, method="ward.D2")

plot(bmHC)
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We’ve seen hierarchical clustering before, in the trees shown alongside the output of the heatmap() function:

heatmap(as.matrix(bmLikDist),
hclustfun=function(x) hclust(x, method="ward.D2"))
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Another implementation is available in the pvclust package, which is handy because it gives us some
estimates of our confidence in the different clusters. The bad news is that it only takes raw numeric data and
does not allow a distance matrix as input. Therefore, our conclusions about this with ordinal data will not
be great, but we can do it anyway to demonstrate.

install.packages("pvclust")

library(pvclust)

?pvclust

# Note: Takes some time to run
bmPVHC = pvclust(bm[,36:45], method.hclust="ward.D2")

## Bootstrap (r = 0.5)... Done.
## Bootstrap (r = 0.6)... Done.
## Bootstrap (r = 0.7)... Done.
## Bootstrap (r = 0.8)... Done.
## Bootstrap (r = 0.9)... Done.
## Bootstrap (r = 1.0)... Done.
## Bootstrap (r = 1.1)... Done.
## Bootstrap (r = 1.2)... Done.
## Bootstrap (r = 1.3)... Done.
## Bootstrap (r = 1.4)... Done.

plot(bmPVHC)
pvrect(bmPVHC)
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K-means clustering

A very common and flexible method, especially in machine learning.

?kmeans

It does not work with any missing values, so you have to remove or impute them beforehand. Since we’ve
already done that for our bird count data set, let’s use it.

As mentioned before, we need some way to decide how many clusters to split the data into–these clustering
methods don’t do it for us automatically. One way is the “elbow method,” in which we plot the total within
sum of squares (how far our points are from the values predicted by a model) that result from using different
numbers of clusters, and pick the lowest cluster number that shows a substantial drop in SS from the previous
number. This forms an “elbow” or inflection point where the line changes direction.

A method for doing this (aside from doing it manually) is built into the factoextra package as
fviz_nbclust().

install.packages("factoextra")

library(factoextra)

## Loading required package: ggplot2

##
## Attaching package: 'ggplot2'
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## The following objects are masked from 'package:psych':
##
## %+%, alpha

## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ

fviz_nbclust(best, kmeans, "wss")
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We can see big drops in SS from 1 to 2, 2 to 3, and 3 to 4 clusters, but from 4 to 5 it stays more or less the
same, so we wouldn’t get much benefit from adding more clusters.

Another method for deciding the number of clusters is based on the average “silhouette width” value of each
observation or variable, which is a measure of how well that item fits in its respective cluster. The solution
with the highest average silhouette value across all items should logically be the one that fits all of them the
best.

fviz_nbclust(best, kmeans, "silhouette")
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This one suggests 2 clusters. Since the two methods disagree, let’s try both and see which one looks like it
makes the most sense.

bestKM4 = kmeans(best, 4)
bestKM4

## K-means clustering with 4 clusters of sizes 10, 20, 15, 15
##
## Cluster means:
## American.Crow American.Dipper American.Goldfinch American.Kestrel
## 1 1504.0000 17.80000 199.4000 67.80000
## 2 115.8500 11.50000 59.5500 21.45000
## 3 478.6667 13.46667 95.2000 30.66667
## 4 928.0000 18.26667 195.2667 63.53333
##
## Clustering vector:
## 1952 1956 1957 1958 1960 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
## 3 2 2 2 2 3 2 2 2 3 4 4 4 3 3
## 1972 1973 1974 1975 1976 1977 1979 1980 1981 1982 1983 1984 1985 1986 1987
## 2 2 3 2 1 3 3 4 3 2 2 2 2 2 2
## 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
## 2 3 2 2 2 4 3 4 1 1 3 1 1 3 1
## 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
## 3 4 1 1 1 4 3 4 4 4 4 1 4 4 4
##
## Within cluster sum of squares by cluster:
## [1] 412681.6 186471.5 359440.8 496603.6
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## (between_SS / total_SS = 91.1 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"

We see a breakdown of our results. First, we can see that it is clustering by “site” (year, in this case), so if
that’s not what we want we’d have to transpose our data to have it cluster by species. It gives us information
on the mean values of each species within each of the 4 clusters, and which cluster each year was assigned to.

Let’s visualize our clusters with fviz_cluster() from factoextra.

fviz_cluster(bestKM4, data=best, show.clust.cent=F)
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Doesn’t look like a great solution to me, personally. There’s a lot of overlap in our 4 clusters and it’s not
immediately clear what could cause the separation.

Let’s take a look at a 2-cluster solution.

bestKM2 = kmeans(best, 2)
fviz_cluster(bestKM2, data=best, show.clust.cent=F)
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Looks much better to me, so I’d probably favor this solution. We can see (generally) earlier years in the
cluster on the left, and later years (plus 1976, oddly) on the right.

As we observed, this clustered by row (year). What if we want to cluster by column (species) instead?

We need to check again for the appropriate number of clusters. This time, since we have so few variables,
we’ll need to limit the maximum number of clusters to the number of observations minus one, which is the
most possible without having each individual point as its own cluster.

fviz_nbclust(t(best), kmeans, "wss", k.max=nrow(t(best)) - 1)
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Looks like 2.

fviz_nbclust(t(best), kmeans, "silhouette", k.max=nrow(t(best)) - 1)
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Again, we get 2. It always helps us be more confident in the result when different methods agree.

bestTKM2 = kmeans(t(best), 2)
bestTKM2

## K-means clustering with 2 clusters of sizes 3, 1
##
## Cluster means:
## 1952 1956 1957 1958 1960 1962 1963 1964
## 1 10 13.33333 4.333333 6 4.666667 9.333333 7 5.666667
## 2 353 5.00000 3.000000 168 2.000000 590.000000 130 13.000000
## 1965 1966 1967 1968 1969 1970 1971 1972
## 1 3.333333 16.33333 23.33333 26.66667 17.33333 13 10 12
## 2 100.000000 390.00000 870.00000 1100.00000 990.00000 390 720 248
## 1973 1974 1975 1976 1977 1979 1980
## 1 22.33333 18.33333 21.33333 60.33333 33.33333 19.33333 66.33333
## 2 29.00000 623.00000 250.00000 1756.00000 644.00000 362.00000 731.00000
## 1981 1982 1983 1984 1985 1986 1987 1988 1989
## 1 43.33333 41 74 51.33333 32.33333 50 37 82 27.66667
## 2 357.00000 125 85 184.00000 104.00000 159 166 127 352.00000
## 1990 1991 1992 1993 1994 1995 1996 1997
## 1 57.66667 57.66667 33.66667 71 50.33333 67 64.33333 109.6667
## 2 148.00000 173.00000 98.00000 1111 419.00000 1137 1266.00000 1346.0000
## 1998 1999 2000 2001 2002 2003 2004 2005
## 1 122.3333 109 106.3333 116 57.66667 104.3333 61 132.6667
## 2 495.0000 1663 1672.0000 486 1469.00000 448.0000 799 1304.0000
## 2006 2007 2008 2009 2010 2011 2012 2013
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## 1 81.33333 110 73.66667 103 132.3333 157.3333 187.3333 120.3333
## 2 1713.00000 1239 1019.00000 551 805.0000 1037.0000 894.0000 1005.0000
## 2014 2015 2016 2017
## 1 118.6667 184 88 109.6667
## 2 1612.0000 748 803 871.0000
##
## Clustering vector:
## American.Crow American.Dipper American.Goldfinch
## 2 1 1
## American.Kestrel
## 1
##
## Within cluster sum of squares by cluster:
## [1] 766650.7 0.0
## (between_SS / total_SS = 97.1 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"

fviz_cluster(bestTKM2, data=t(best), show.clust.cent=F)
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Looks good overall, though we have so few variables to cluster that it doesn’t mean a whole lot. But we
see American Crow on its own, and all the rest in a separate cluster. I could imagine American Goldfinch
breaking off in a different cluster if we had more data.
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K-medoids clustering

A type of clustering in the same family of methods as k-means, but using median values in each cluster
instead of means. The algorithm we’ll use here is called Partitioning Around Medoids (or PAM) and is
implemented as pam() in the cluster package.

FOr our purposes, PAM is most useful because of its ability to accept distance matrices (while kmeans only
takes raw data), meaning we can conduct comparable clustering analyses on all kinds of different data as long
as we can generate distance matrices from them. It also has a nice method (using the pamk() function in the
fpc package) to calculate the appropriate number of clusters on its own, using average silhouette widths.

install.packages("cluster")

library(cluster)

?pam

install.packages("fpc")

library(fpc)

?pamk

We’ll use our folktale data again, and convert our correlation matrix to a distance matrix.

folkDist = as.dist(cor2dist(folkCor))
as.matrix(folkDist)[1:10,1:10]

## Italian Ladin Sardinian Walloon French Spanish
## Italian 0.0000000 0.8782816 0.6823370 0.9140159 0.6893560 0.7720415
## Ladin 0.8782816 0.0000000 0.9917067 1.0459926 0.7858445 0.9089306
## Sardinian 0.6823370 0.9917067 0.0000000 1.0298067 0.8471606 0.9412610
## Walloon 0.9140159 1.0459926 1.0298067 0.0000000 0.9512568 1.0974803
## French 0.6893560 0.7858445 0.8471606 0.9512568 0.0000000 0.6964989
## Spanish 0.7720415 0.9089306 0.9412610 1.0974803 0.6964989 0.0000000
## Portuguese 0.8349579 1.0217388 0.9005201 1.1350364 0.7930749 0.6518344
## Catalan 0.6838287 0.9257290 0.9798357 0.9995986 0.6421311 0.5554924
## Romanian 1.0319581 0.9906031 0.9735383 1.1281215 0.9936963 1.0186373
## Welsh 1.1737091 1.1686086 1.2762787 1.2569655 1.0493463 1.0447742
## Portuguese Catalan Romanian Welsh
## Italian 0.8349579 0.6838287 1.0319581 1.173709
## Ladin 1.0217388 0.9257290 0.9906031 1.168609
## Sardinian 0.9005201 0.9798357 0.9735383 1.276279
## Walloon 1.1350364 0.9995986 1.1281215 1.256965
## French 0.7930749 0.6421311 0.9936963 1.049346
## Spanish 0.6518344 0.5554924 1.0186373 1.044774
## Portuguese 0.0000000 0.7859478 1.0544266 1.056593
## Catalan 0.7859478 0.0000000 1.0179228 1.020382
## Romanian 1.0544266 1.0179228 0.0000000 1.114386
## Welsh 1.0565932 1.0203822 1.1143862 0.000000

But how many societies did we have, again? We need to know to see what maximum to give for our number
of clusters.

dim(folkDist)

## NULL

nrow(folkDist)

## NULL
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ncol(folkDist)

## NULL

class(folkDist)

## [1] "dist"

Because the object’s class is dist rather than matrix, none of these commands work. Instead we need to
reference its attributes().

attributes(folkDist)

## $Labels
## [1] "Italian" "Ladin" "Sardinian" "Walloon"
## [5] "French" "Spanish" "Portuguese" "Catalan"
## [9] "Romanian" "Welsh" "Irish" "Scottish"
## [13] "Luxembourgish" "German" "Austrian" "Flemish"
## [17] "Dutch" "Frisian" "English" "Swedish"
## [21] "Norwegian" "Danish" "Faroese" "Icelandic"
## [25] "Czech" "Slovak" "Lusatian" "Polish"
## [29] "Byelorussian" "Ukrainian" "Russian" "Bulgarian"
## [33] "Macedonian" "Serbian" "Croation" "Slovenenian"
## [37] "Latvian" "Lithuanian" "Pakistani" "Indian"
## [41] "Nepali" "Gypsy" "Tadzhik" "Iranian"
## [45] "Kurdish" "Afghan" "Ossetian" "Albanian"
## [49] "Greek" "Armenian"
##
## $Size
## [1] 50
##
## $call
## as.dist.default(m = cor2dist(folkCor))
##
## $class
## [1] "dist"
##
## $Diag
## [1] FALSE
##
## $Upper
## [1] FALSE

Now we can use pamk() to find the appropriate number of clusters.

folkPAMK = pamk(folkDist, diss=T, krange=2:attributes(folkDist)$Size-1)
folkPAMK

## $pamobject
## Medoids:
## ID
## [1,] "5" "French"
## [2,] "44" "Iranian"
## Clustering vector:
## Italian Ladin Sardinian Walloon French
## 1 1 1 1 1
## Spanish Portuguese Catalan Romanian Welsh
## 1 1 1 2 1
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## Irish Scottish Luxembourgish German Austrian
## 1 1 1 1 1
## Flemish Dutch Frisian English Swedish
## 1 1 1 1 1
## Norwegian Danish Faroese Icelandic Czech
## 1 1 1 1 1
## Slovak Lusatian Polish Byelorussian Ukrainian
## 1 1 1 1 1
## Russian Bulgarian Macedonian Serbian Croation
## 1 2 2 1 1
## Slovenenian Latvian Lithuanian Pakistani Indian
## 1 1 1 2 2
## Nepali Gypsy Tadzhik Iranian Kurdish
## 2 1 2 2 2
## Afghan Ossetian Albanian Greek Armenian
## 2 1 2 1 2
## Objective function:
## build swap
## 0.8496261 0.8496261
##
## Available components:
## [1] "medoids" "id.med" "clustering" "objective" "isolation"
## [6] "clusinfo" "silinfo" "diss" "call"
##
## $nc
## [1] 2
##
## $crit
## [1] 0.000000000 0.149179002 0.102074871 0.080441029 0.084323994
## [6] 0.080504114 0.073613609 0.081312922 0.087193120 0.085950584
## [11] 0.086882719 0.085815507 0.082688501 0.079179050 0.081001586
## [16] 0.084154537 0.084107761 0.087905382 0.082774597 0.079421444
## [21] 0.076192212 0.080882142 0.082893335 0.086114439 0.084555630
## [26] 0.079142232 0.082129217 0.082401490 0.079769015 0.078175093
## [31] 0.076887800 0.076728420 0.078670137 0.073632584 0.067214642
## [36] 0.052717717 0.049145717 0.043758800 0.040458898 0.040388866
## [41] 0.032240344 0.028562676 0.026081553 0.025265582 0.023046323
## [46] 0.018532269 0.013992138 0.009393337 0.003738835

names(folkPAMK)

## [1] "pamobject" "nc" "crit"

Looks like it settled on 2 clusters, and we can reference this with $nc.

Note: Really, we could just use this object, but out of personal habit I like to go back and run the function
myself using the value for the number of clusters.

folkPAM = pam(folkDist, diss=T, k=folkPAMK$nc)
folkPAM

## Medoids:
## ID
## [1,] "5" "French"
## [2,] "44" "Iranian"
## Clustering vector:
## Italian Ladin Sardinian Walloon French
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## 1 1 1 1 1
## Spanish Portuguese Catalan Romanian Welsh
## 1 1 1 2 1
## Irish Scottish Luxembourgish German Austrian
## 1 1 1 1 1
## Flemish Dutch Frisian English Swedish
## 1 1 1 1 1
## Norwegian Danish Faroese Icelandic Czech
## 1 1 1 1 1
## Slovak Lusatian Polish Byelorussian Ukrainian
## 1 1 1 1 1
## Russian Bulgarian Macedonian Serbian Croation
## 1 2 2 1 1
## Slovenenian Latvian Lithuanian Pakistani Indian
## 1 1 1 2 2
## Nepali Gypsy Tadzhik Iranian Kurdish
## 2 1 2 2 2
## Afghan Ossetian Albanian Greek Armenian
## 2 1 2 1 2
## Objective function:
## build swap
## 0.8496261 0.8496261
##
## Available components:
## [1] "medoids" "id.med" "clustering" "objective" "isolation"
## [6] "clusinfo" "silinfo" "diss" "call"

The results look the same either way.

We can plot the silhouette values by cluster to see how well the observations fit.

plot(folkPAM)
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Silhouette width si
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Silhouette plot of pam(x = folkDist, k = folkPAMK$nc, diss = T)

Average silhouette width :  0.15

n = 50 2  clusters  Cj

j :  nj | avei∈Cj  si

1 :   38  |  0.16

2 :   12  |  0.12

With fewer observations, we would see labels next to each observation so we could see which is which. Here,
we see one actually has a negative value, which means it does not fit well within its assigned cluster (but not
badly enough to warrant its own cluster, or it would have returned 3 clusters).

In general, the fit is not good, because we see almost all the silhouette values are below 0.2–ideally, we’d
want them all above 0.5. Some of this I’ve found is a result of the dichotomous data, I think because it just
doesn’t carry enough information to create good correlations and cleanly-separated clusters. So keep that in
mind when interpreting your results, if using dichotomous or ordinal data.

The factoextra functions don’t work with PAM objects, but we can use the clusplot() function in cluster
to get a similar visualization.

?clusplot

clusplot(folkPAM, lines=0, color=T, labels=3)
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Even though the fit isn’t great (and, as we can see, the first two components only explain 26% of the variance,
which is also not good) the clusters it formed and the distances between societies make good intuitive sense.

Exploratory factor analysis

Exploratory factor analysis (EFA) is another commonly used method, to look at underlying (“latent”)
relationships between variables. It’s also a prerequisite to confirmatory factor analysis (CFA), a method in
structural equation modeling that we’ll cover next time.

R base has a factor analysis function:

?factanal

Here, for our Bob Marshall data again, we’ll use fa() in the psych package, since it has some extra useful
options.

?psych::fa

We also need the GPArotation package to rotate our result, which is a way of making factors easier to
interpret by rotating their axes. Don’t worry about the math for now, just know that it’s a typical stage in
factor analysis.

install.packages("GPArotation")

The psych package has a couple methods to determine how many factors we should use. One of which uses
the “Very Simple Structure” criterion (which you can read about on its help page) and the other is parallel
analysis, which is a good, reliable method based on randomly permuting (mixing around) the data.
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?psych::vss
?psych::fa.parallel

vss(bmLikCor, n=nrow(bmLikCor)-1, rotate="oblimin", fm="ml", n.obs=nrow(bmLik))

## Loading required namespace: GPArotation

## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A loading greater than abs(1) was detected. Examine the loadings
## carefully.

## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A loading greater than abs(1) was detected. Examine the loadings
## carefully.

1

1 1

1 1 1 1
1 1

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Factors

V
er

y 
S

im
pl

e 
S

tr
uc

tu
re

 F
it

Very Simple Structure

2

2

2 2 2 2

2 2
3

3 3
3 3

3
3

4 4 4 4

4 4

##
## Very Simple Structure
## Call: vss(x = bmLikCor, n = nrow(bmLikCor) - 1, rotate = "oblimin",
## fm = "ml", n.obs = nrow(bmLik))
## VSS complexity 1 achieves a maximimum of 0.68 with 4 factors
## VSS complexity 2 achieves a maximimum of 0.76 with 4 factors
##
## The Velicer MAP achieves a minimum of 0.07 with 1 factors
## BIC achieves a minimum of NA with 5 factors
## Sample Size adjusted BIC achieves a minimum of NA with 5 factors
##
## Statistics by number of factors
## vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC
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## 1 0.35 0.00 0.066 35 6.7e+02 5.6e-118 9.9 0.35 0.21 457.19 568
## 2 0.53 0.55 0.084 26 3.9e+02 7.6e-67 6.8 0.55 0.19 234.92 317
## 3 0.55 0.66 0.106 18 2.2e+02 4.9e-37 5.1 0.67 0.17 113.21 170
## 4 0.68 0.76 0.099 11 1.1e+02 1.2e-17 3.3 0.78 0.15 39.79 75
## 5 0.67 0.74 0.131 5 3.0e+01 1.7e-05 3.4 0.77 0.11 -0.39 15
## 6 0.64 0.72 0.198 0 1.4e+01 NA 3.8 0.75 NA NA NA
## 7 0.61 0.73 0.379 -4 1.1e-07 NA 3.4 0.77 NA NA NA
## 8 0.54 0.62 0.546 -7 2.3e-09 NA 5.1 0.66 NA NA NA
## 9 0.54 0.59 1.000 -9 0.0e+00 NA 5.7 0.62 NA NA NA
## complex eChisq SRMR eCRMS eBIC
## 1 1.0 9.9e+02 1.6e-01 0.186 781.0
## 2 1.1 5.4e+02 1.2e-01 0.159 380.5
## 3 1.3 2.7e+02 8.6e-02 0.136 162.6
## 4 1.3 7.0e+01 4.4e-02 0.088 4.2
## 5 1.4 1.7e+01 2.1e-02 0.064 -13.6
## 6 1.4 5.5e+00 1.2e-02 NA NA
## 7 1.6 8.1e-08 1.5e-06 NA NA
## 8 1.3 1.6e-09 2.1e-07 NA NA
## 9 1.3 1.2e-17 1.8e-11 NA NA

VSS seems to give us 4 or 5 factors pretty consistently.

fa.parallel(bmLikCor, fm="ml", n.obs=nrow(bmLik))
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## Parallel analysis suggests that the number of factors = 5 and the number of components = 4

And parallel analysis says 5. Given the agreement, this seems like a good place to start. Notice that it gives
us an estimate for the number of components, too, if we were running PCA.
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Back to the point on rotation, we need to specify a method to use. The two options are an orthogonal
rotation, which assumes that factors should not be correlated with one another at all, or an oblique rotation,
which allows for correlations between factors. Unless we have a good basis for saying that the different factors
we find should be completely distinct from one another, I tend toward oblique rotations. It usually doesn’t
make much of a difference. The most common orthogonal rotation is varimax and a good oblique rotation is
oblimin. You can always run both and compare, since EFA is exploratory by nature–just don’t do it to go
“fishing” for better structure.

We also use a maximum likelihood estimator ("ml") to fit our model. There are other options, which we’ll
explore a little more in CFA.

bmEFA = fa(bmLikCor, nfactors=5, rotate="oblimin", fm="ml", n.obs=nrow(bmLik))
bmEFA

## Factor Analysis using method = ml
## Call: fa(r = bmLikCor, nfactors = 5, n.obs = nrow(bmLik), rotate = "oblimin",
## fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
## ML1 ML2 ML3 ML4 ML5 h2 u2 com
## natural 0.85 -0.05 0.00 0.12 -0.03 0.74 0.264 1.1
## remotnes 0.98 0.04 0.03 -0.07 0.03 1.00 0.005 1.0
## scenic_b 0.05 -0.04 0.97 -0.01 0.02 1.00 0.005 1.0
## hunting -0.03 0.99 -0.03 0.05 0.02 1.00 0.005 1.0
## fishing 0.11 0.67 0.02 -0.14 -0.06 0.45 0.546 1.2
## recent_f -0.13 0.17 0.39 0.23 -0.13 0.25 0.747 2.7
## test_ski 0.01 0.01 -0.01 0.94 0.03 0.90 0.105 1.0
## familiar 0.01 0.08 0.22 0.26 -0.45 0.32 0.683 2.2
## variety 0.06 0.01 0.03 0.14 0.70 0.56 0.444 1.1
## friend_s -0.12 0.05 0.28 -0.06 0.47 0.28 0.716 1.8
##
## ML1 ML2 ML3 ML4 ML5
## SS loadings 1.73 1.47 1.24 1.09 0.94
## Proportion Var 0.17 0.15 0.12 0.11 0.09
## Cumulative Var 0.17 0.32 0.44 0.55 0.65
## Proportion Explained 0.27 0.23 0.19 0.17 0.15
## Cumulative Proportion 0.27 0.49 0.69 0.85 1.00
##
## With factor correlations of
## ML1 ML2 ML3 ML4 ML5
## ML1 1.00 -0.02 0.47 0.05 0.10
## ML2 -0.02 1.00 -0.07 0.20 -0.10
## ML3 0.47 -0.07 1.00 0.21 0.11
## ML4 0.05 0.20 0.21 1.00 0.10
## ML5 0.10 -0.10 0.11 0.10 1.00
##
## Mean item complexity = 1.4
## Test of the hypothesis that 5 factors are sufficient.
##
## The degrees of freedom for the null model are 45 and the objective function was 3.23 with Chi Square of 1304.42
## The degrees of freedom for the model are 5 and the objective function was 0.07
##
## The root mean square of the residuals (RMSR) is 0.02
## The df corrected root mean square of the residuals is 0.06
##
## The harmonic number of observations is 409 with the empirical chi square 16.51 with prob < 0.0055
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## The total number of observations was 409 with Likelihood Chi Square = 29.68 with prob < 1.7e-05
##
## Tucker Lewis Index of factoring reliability = 0.822
## RMSEA index = 0.111 and the 90 % confidence intervals are 0.074 0.15
## BIC = -0.39
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
## ML1 ML2 ML3 ML4 ML5
## Correlation of (regression) scores with factors 1.00 1.00 1.00 0.95 0.80
## Multiple R square of scores with factors 0.99 0.99 0.99 0.90 0.64
## Minimum correlation of possible factor scores 0.99 0.99 0.99 0.80 0.29

We see our loadings of each item on each of the 4 factors, and a whole bunch of additional information.
Anything between 0.2 and -0.2 doesn’t mean much and is usually omitted. As a rule, you want an item that
loads around 0.5 or higher on one factor, and less than 0.3 on all other factors for it to make sense as only
contributing to that factor. If it doesn’t, I’d think you should be using an oblique rotation.

We can also pull out the item loadings on their own, and it masks values < 0.2 and > -0.2. You’ll notice one
loading is above 1, which R warned us about. I’ve found that this is usually okay if it’s not too much above 1
(and sometimes occurs for no real reason related to data quality), but you’d want to check your results more
thoroughly if you have a bunch of them–you probably need more factors.

bmEFA$loadings

##
## Loadings:
## ML1 ML2 ML3 ML4 ML5
## natural 0.847 0.123
## remotnes 0.981
## scenic_b 0.971
## hunting 0.985
## fishing 0.107 0.674 -0.143
## recent_f -0.134 0.175 0.388 0.231 -0.132
## test_ski 0.941
## familiar 0.218 0.260 -0.447
## variety 0.144 0.703
## friend_s -0.116 0.277 0.469
##
## ML1 ML2 ML3 ML4 ML5
## SS loadings 1.731 1.472 1.220 1.072 0.938
## Proportion Var 0.173 0.147 0.122 0.107 0.094
## Cumulative Var 0.173 0.320 0.442 0.549 0.643
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